Force, Noise, and Motor Planning
A paper published in Nature in 1998 (http://bit.ly/1q8L83D) showed that neural control signals are corrupted by noise whose variance increases with the size of the control signal. Although that may seem like gibberish, our conversation in class boiled it down in a simple example: the greater the acceleration of your movement, the less accurate it will be. For example, pretend you have to extend your arm as if to throw a punch. If you do it slowly, you have exceptional control over this action. If done quickly, the accuracy lowers as the noise increases. This has to do with user mechanics because it helps the designer understand the nature of a user’s movements and thus shape the screen layout accordingly. We then spoke to the idea of planning for the optimal movement for the user and learned that the observed results come pretty near to what was predicted.